Article thumbnail

Exciton recombination dynamics in CdTe/CdZnTe quantum wells

By XQ Zhang, YS Wang, Z Xu, YB Hou, ZJ Wang, XR Xu, ZK Tang, HZ Wang, WL Li, FL Zhao, ZG Cai and JY Zhou


Quantum wells of CdTe/CdZnTe were grown by molecular beam epitaxy. The highest order of satellite peak of the sample is 5 from XRD spectra and excition emission linewidth is about 4.8 nm at 77 K. It was shown that our samples are very goad. The recombination dynamics of exciton in high-quality CdZnTe/CdTe multiquantum wells were investigated by means of time-resolved photoluminescence(PL) spectra with different excitation power at 77 K and photoluminescence spectra with different temperature. When weaker excitation was used, radiative recombination decay time of the exciton was reduced as the excitation intensity was decreased; the results indicate that the dominant mechanism may be the quenching of exciton emission by impurities and defects. The linewidth of the exciton emission becomes broader with increasing temperature, the linewidth at low temperature is only due to the well thickness, and the broadening linewidth at high temperature is contributed by the interactions among the exciton and LO and TO phonons and ionized donor impurities. The PL intensities are reduced with increasing temperature, which is mainly due to the thermal dissociation of excitons, i.e., the electrons or holes jump into the barriers from the wells by thermal excitations. The exciton emission from n = 2 heavy hole exciton at 77 K has been observed, and the n = 2 heavy hole exciton luminescence decay time is shorter than that from n = 1. The investigation indicates that there is the exciton energy relaxation from the n = 2 to n = 1 heavy hole exciton state by phonons

Year: 1999
OAI identifier:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.