Location of Repository

Pin1 modulates the structure and function of human RNA polymerase II

By Yu-Xin Xu, Yutaka Hirose, Xiao Zhen Zhou, Kun Ping Lu and James L. Manley


The C-terminal domain of the RNA polymerase (RNAP) II largest subunit (CTD) plays critical roles both in transcription of mRNA precursors and in the processing reactions needed to form mature mRNAs. The CTD undergoes dynamic changes in phosphorylation during the transcription cycle, and this plays a significant role in coordinating its multiple activities. But how these changes themselves are regulated is not well understood. Here we show that the peptidyl-prolyl isomerase Pin1 influences the phosphorylation status of the CTD in vitro by inhibiting the CTD phosphatase FCP1 and stimulating CTD phosphorylation by cdc2/cyclin B. This is reflected in vivo by accumulation of hypophosphorylated RNAP II in pin1-/- cells, and of a novel hyper-hyperphosphorylated form in cells induced to overexpress Pin1. This hyper-hyperphosphorylated form of RNAP II also accumulates in M-phase cells, in a Pin1-dependent manner, and associates specifically with Pin1. Functionally, we find that Pin1 overexpression specifically inhibits ongoing transcription of mRNA precursors in vivo and both transcription and RNAP II-stimulated pre-mRNA splicing in cell extracts. Pin1 thus plays a significant role in regulating RNAP II CTD structure and function

Topics: Research Papers
Publisher: Cold Spring Harbor Laboratory Press
Year: 2003
DOI identifier: 10.1101/gad.1135503
OAI identifier: oai:pubmedcentral.nih.gov:280625
Provided by: PubMed Central
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://dx.doi.org/10.1101/gad.... (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.