Deep Learning Predictive Models for Terminal Call Rate Prediction during the Warranty Period


Background: This paper addresses the problem of products’ terminal call rate (TCR) prediction during the warranty period. TCR refers to the information on the amount of funds to be reserved for product repairs during the warranty period. So far, various methods have been used to address this problem, from discrete event simulation and time series, to machine learning predictive models. Objectives: In this paper, we address the above named problem by applying deep learning models to predict terminal call rate. Methods/Approach: We have developed a series of deep learning models on a data set obtained from a manufacturer of home appliances, and we have analysed their quality and performance. Results: Results showed that a deep neural network with 6 layers and a convolutional neural network gave the best results. Conclusions: This paper suggests that deep learning is an approach worth exploring further, however, with the disadvantage being that it requires large volumes of quality data

Similar works

Full text


Hrčak - Portal of scientific journals of Croatia

Provided a free PDF
oai:hrcak.srce.hr:244804Last time updated on 10/23/2020View original full text link

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.