Investigating Scientific Data Change with User Research Methods


Scientific datasets are continually expanding and changing due to fluctuations with instruments, quality assessment and quality control processes, and modifications to software pipelines. Datasets include minimal information about these changes or their effects requiring scientists manually assess modifications through a number of labor intensive and ad-hoc steps. The Deduce project is investigating data change to develop metrics, methods, and tools that will help scientists systematically identify and make decisions around data changes. Currently, there is a lack of understanding, and common practices, for identifying and evaluating changes in datasets since systematically measuring and managing data change is under explored in scientific work. We are conducting user research to address this need by exploring scientist's conceptualizations, behaviors, needs, and motivations when dealing with changing datasets. Our user research utilizes multiple methods to produce foundational, generative insights and evaluate research products produced by our team. In this paper, we detail our user research process and outline our findings about data change that emerge from our studies. Our work illustrates how scientific software teams can push beyond just usability testing user interfaces or tools to better probe the underlying ideas they are developing solutions to address

Similar works

This paper was published in eScholarship - University of California.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.