Article thumbnail

A Generalized Framework for Analytic Regularization of Uniform Cubic B-spline Displacement Fields

By Keyur D. Shah, James A. Shackleford, Nagarajan Kandasamy and Gregory C. Sharp

Abstract

Image registration is an inherently ill-posed problem that lacks the constraints needed for a unique mapping between voxels of the two images being registered. As such, one must regularize the registration to achieve physically meaningful transforms. The regularization penalty is usually a function of derivatives of the displacement-vector field, and can be calculated either analytically or numerically. The numerical approach, however, is computationally expensive depending on the image size, and therefore a computationally efficient analytical framework has been developed. Using cubic B-splines as the registration transform, we develop a generalized mathematical framework that supports five distinct regularizers: diffusion, curvature, linear elastic, third-order, and total displacement. We validate our approach by comparing each with its numerical counterpart in terms of accuracy. We also provide benchmarking results showing that the analytic solutions run significantly faster -- up to two orders of magnitude -- than finite differencing based numerical implementations.Comment: 17 pages, 5 figure

Topics: Mathematics - Numerical Analysis, Electrical Engineering and Systems Science - Image and Video Processing, Physics - Medical Physics
Year: 2020
OAI identifier: oai:arXiv.org:2010.02400

Suggested articles


To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.