PI-GAN: Learning Pose Independent representations for multiple profile face synthesis

Abstract

Generating a pose-invariant representation capable of synthesizing multiple face pose views from a single pose is still a difficult problem. The solution is demanded in various areas like multimedia security, computer vision, robotics, etc. Generative adversarial networks (GANs) have encoder-decoder structures possessing the capability to learn pose-independent representation incorporated with discriminator network for realistic face synthesis. We present PIGAN, a cyclic shared encoder-decoder framework, in an attempt to solve the problem. As compared to traditional GAN, it consists of secondary encoder-decoder framework sharing weights from the primary structure and reconstructs the face with the original pose. The primary framework focuses on creating disentangle representation, and secondary framework aims to restore the original face. We use CFP high-resolution, realistic dataset to check the performance.Comment: 8 pages, 2 figure

Similar works

This paper was published in arXiv.org e-Print Archive.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.