Skip to main content
Article thumbnail
Location of Repository

Genetic analysis of temperature-sensitive mutants which define the genes for the major herpes simplex virus type 2 DNA-binding protein and a new late function.

By R A Dixon, D J Sabourin and P A Schaffer


Eleven temperature-sensitive mutants of herpes simplex virus type 2 (HSV-2) exhibit overlapping patterns of complementation that define four functional groups. Recombination tests confirmed the assignment of mutants to complementation groups 1 through 4 and permitted the four groups to be ordered in an unambiguous linear array. Combined recombination and marker rescue tests (A. E. Spang, P. J. Godowski, and D. M. Knipe, J. Virol. 45:332-342, 1983) indicate that the mutations lie in a tight cluster near the center of UL to the left of the gene for DNA polymerase in the order 4-3-2-1-polymerase. The seven mutants that make up groups 1 and 2 fail to complement each other and mutants in HSV-1 complementation group 1-1, the group thought to define the structural gene for the major HSV-1 DNA-binding protein with a molecular weight of 130,000. At 38 degrees C, mutants in groups 1 and 2 synthesize little or no viral DNA, and unlike cells infected with the wild-type virus, mutant-infected cells exhibit no detectable nuclear antigen reactive with monoclonal or polypeptide-specific antibody to the major HSV-2 DNA-binding protein. The four mutants that make up groups 3 and 4 do not complement each other, nor do they complement mutants in group 2. They do, however, complement mutants in group 1 as well as representative mutants of HSV-1 complementation group 1-1. At 38 degrees C, mutants in groups 3 and 4 are phenotypically DNA+, and nuclei of mutant-infected cells contain the HSV-2 DNA-binding protein. Thus, the four functional groups appear to define two closely linked genes, one encoding an early viral function affecting both viral DNA synthesis and expression of the DNA-binding protein with a molecular weight of 130,000 (groups 1 and 2), and the other encoding a previously unidentified late viral function (groups 3 and 4). The former gene presumably represents the structural gene for the major HSV-2 DNA-binding protein

Topics: Research Article
Year: 1983
OAI identifier:
Provided by: PubMed Central
Sorry, our data provider has not provided any external links therefore we are unable to provide a link to the full text.

Suggested articles

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.