Article thumbnail
Location of Repository

The role of guanosine-3',5'-bis-pyrophosphate in mediating antimicrobial activity of the antibiotic 3,5-dihydroxy-4-ethyl-trans-stilbene.

By L Sundar and F N Chang

Abstract

The mode of action of 3,5-dihydroxy-4-ethyl-trans-stilbene (ES), an antibiotic produced by Xenorhabdus luminescens symbiotically associated with an entomopathogenic nematode, was investigated. ES was active against gram-positive and a number of gram-negative bacteria. In susceptible bacteria this antibiotic caused the inhibition of total RNA synthesis and, to a lesser extent, protein synthesis. At or above MICs, ES triggered a substantial accumulation of an intracellular regulatory compound, guanosine-3',5'-bis-pyrophosphate (ppGpp). This response was also noticed in species of bacteria which have previously not been shown to use ppGpp as a regulatory molecule. The involvement of ppGpp in antibiotic action was confirmed by using an isogenic stringent and a relaxed pair of Escherichia coli strains. The fact that the accumulation of ppGpp was correlated with the susceptibility of various gram-positive and gram-negative bacteria to ES suggests that this nucleotide is involved in the regulation of RNA synthesis and growth in all these microorganisms. Thus, inhibition of RNA synthesis via an increase in ppGpp concentrations may represent a mechanism that is prevalent among most bacteria and one that could be exploited for achieving a rapid inhibition of bacterial growth

Topics: Research Article
Year: 1992
DOI identifier: 10.1128/aac.36.12.2645
OAI identifier: oai:pubmedcentral.nih.gov:245521
Provided by: PubMed Central
Sorry, our data provider has not provided any external links therefore we are unable to provide a link to the full text.

Suggested articles


To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.