Skip to main content
Article thumbnail
Location of Repository

Lipid and fatty acid composition of Gluconobacter oxydans before and after intracytoplasmic membrane formation.

By D L Heefner and G W Claus


Gluconobacter oxydans differentiates by forming quantities of intracytoplasmic membranes at the end of exponential growth, and this formation occurs concurrently with a 60% increase in cellular lipid. The present study was initiated to determine whether this newly synthesized lipid differed from that extracted before intracytoplasmic membrane synthesis. Undifferentiated exponential-phase cells were found to contain 30% phosphatidylcholine, 27.1% caridolipin, 25% phosphatidylethanolamine, 12.5% phosphatidylglycerol, 0.4% phosphatidic acid, 0.2% phosphatidylserine, and four additional unidentified lipids totaling less than 5%. The only change detected after formation of intracytoplasmic membranes was a slight decrease in phosphatidylethanolamine and a corresponding increase in phosphatidylcholine. An examination of lipid hydrolysates revealed 11 different fatty acids in the lipids from each cell type. Hexadecanoic acid and monounsaturated octadecenoic accounted for more than 75% of the total fatty acids for both cell types. Proportional changes were noted in all fatty acids except octadecenoate. Anteiso-pentadecanoate comprised less than 1% of the fatty acids from undifferentiated cells but more than 13% of the total fatty acids from cells containing intracytoplasmic membranes. These results suggest that anteiso-pentadecanoate formation closely parallels the formation of intracytoplasmic membranes. Increased concentrations of this fatty acid may contribute to the fluidity necessary for plasma membrane convolution during intracytoplasmic membrane development

Topics: Research Article
Year: 1978
OAI identifier:
Provided by: PubMed Central
Sorry, our data provider has not provided any external links therefore we are unable to provide a link to the full text.

Suggested articles

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.