Skip to main content
Article thumbnail
Location of Repository

Hydroxy amino acid metabolism in Pseudomonas cepacia: role of L-serine deaminase in dissimilation of serine, glycine, and threonine.

By H C Wong and T G Lessie


Growth of Pseudomonas cepacia (P. multivorans) on serine depended upon induction of a previously undescribed L-serine deaminase distinct from threonine deaminase. Formation of the enzyme was induced during growth on serine, glycine, or threonine. The induction pattern reflected a role of the enzyme in catabolism of these three amino acids. Both threonine and glycine supported growth of serine auxotrophs and were presumably converted to serine and pyruvate in the course of their degradation. Mutant strains deficient in serine deaminase, or unable to use pyruvate as a carbon source, failed to utilize serine or glycine and grew poorly with threonine, whereas strains deficient in threonine dehydrogenase or alpha-amino beta-ketobutyrate:coenzyme A ligase (which together convert threonine to glycine and acetyl coenzyme A) failed to utilize threonine or derepress serine deaminase in the presence of this amino acid. The results confirm for the first time the role of alpha-amin beta-ketobutyrate:coenzyme A ligase in threonine degradation and indicate that threonine does not mimic serine as an inducer of serine deaminase

Topics: Research Article
Year: 1979
OAI identifier:
Provided by: PubMed Central
Sorry, our data provider has not provided any external links therefore we are unable to provide a link to the full text.

Suggested articles

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.