Article thumbnail
Location of Repository

Transmethylation inhibitors decrease chemotactic sensitivity and delay cell aggregation in Dictyostelium discoideum.

By A van Waarde and P J van Haastert

Abstract

In Dictyostelium discoideum, extracellular cyclic AMP (cAMP) induces chemotaxis and cell aggregation. Suspensions of cAMP-sensitive cells respond to a cAMP pulse with a rapid, transient increase of protein carboxyl methylation. The transmethylation inhibitors cycloleucine, L-homocysteine thiolactone, and coformycin decrease chemotactic sensitivity and delay cell aggregation when administered in concentrations which do not influence cAMP binding to cell surface receptors or the activity of total phosphodiesterase. The ability of the drugs to inhibit chemotaxis could be correlated with their capacity to convert the initial transient positive response of carboxyl methylation to cAMP into a negative one. This suggests that both protein O-methyltransferase and protein methylesterase are activated after stimulation of aggregative cells with cAMP, the net effect being a transient, positive response of methylation. In the presence of a sufficiently large dose of inhibitor, methyltransferase is inhibited, whereas methylesterase activity is much less affected, so that a transient negative response of methylation to cAMP is observed. The slow, positive response of carboxyl methylation to cAMP which occurs ca. 2.5 to 5 min after stimulus administration is not affected by inhibitors of transmethylation. These results suggest that methylation reactions are involved in the chemotactic response of D. discoideum cells to cAMP

Topics: Research Article
Year: 1984
OAI identifier: oai:pubmedcentral.nih.gov:215256
Provided by: PubMed Central
Sorry, our data provider has not provided any external links therefore we are unable to provide a link to the full text.

Suggested articles


To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.