Skip to main content
Article thumbnail
Location of Repository

Evidence for transcription antitermination control of tryptophanase operon expression in Escherichia coli K-12.

By V Stewart and C Yanofsky


Tryptophanase, encoded by the gene tnaA, is a catabolic enzyme distinct from the enzymes of tryptophan biosynthesis. Tryptophanase synthesis is induced by tryptophan and is subject to catabolite repression. We studied the mechanism of tna operon induction. Mutants with altered rho factor were partially constitutive for tna expression, implicating rho-dependent transcription termination in the control of tna expression. Measurements of mRNA synthesis from the transcribed leader region preceeding the tna operon suggested that the tna promoter was constitutive and that in the absence of inducer, transcription terminated in the leader region. Upon induction, this transcription termination was relieved. Cis-acting constitutive mutants had genetic alterations in the tna leader region. These lesions defined a site that is homologous to the bacteriophage lambda boxA sequence, which is thought to play a role in antitermination control of lambda lytic gene expression. We propose that tna expression is subject to transcription antitermination control. We hypothesize that a tryptophan-activated antiterminator protein mediates induction by suppressing the rho-dependent termination sites in the leader region, thus allowing transcription to proceed into the tna operon structural gene region

Topics: Research Article
Year: 1985
OAI identifier:
Provided by: PubMed Central
Sorry, our data provider has not provided any external links therefore we are unable to provide a link to the full text.

Suggested articles

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.