Location of Repository

Leucine regulation of the ilvGEDA operon of Serratia marcescens by attenuation is modulated by a single leucine codon.

By J H Hsu, E Harms and H E Umbarger


The effect of leucine limitation and of restricted leucine tRNA charging on the expression of the ilvGEDA operon of Serratia marcescens was examined. In this organism, the ilv leader region specifies a putative peptide containing only a single leucine codon that could be involved in leucine-mediated control by attenuation (E. Harms, J.-H. Hsu, C. S. Subrahmanyam, and H. E. Umbarger, J. Bacteriol. 164:207-216, 1985). A plasmid (pPU134) containing the DNA of the S. marcescens ilv control region and three of the associated structural genes was studied as a single chromosomal copy in an Escherichia coli strain auxotrophic for all three branched-chain amino acids. The S. marcescens ilv genes responded to a multivalent control similar to that found in other enteric organisms. Furthermore, the S. marcescens ilv genes were derepressed when the charging of leucine tRNA was restricted in a leuS derivative of E. coli that had been transformed with pPU134. It was concluded that ribosome stalling leading to deattenuation is not dependent on either tandem or a consecutive series of codons for the regulatory amino acid. However, the fact that the single leucine codon is a less frequently used codon (CUA) may be important. The procedure for obtaining the cloned ilv genes in single chromosomal copy exploited the dependence of ColE1 replicons on the polA gene. The cloning experiments also revealed a branched-chain amino acid-glutamate transaminase in S. marcescens that is different from transaminase B

Topics: Research Article
Year: 1985
OAI identifier: oai:pubmedcentral.nih.gov:214232
Provided by: PubMed Central
Sorry, our data provider has not provided any external links therefore we are unable to provide a link to the full text.

Suggested articles

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.