Article thumbnail
Location of Repository

Nucleotide sequence of the Salmonella typhimurium mutL gene required for mismatch repair: homology of MutL to HexB of Streptococcus pneumoniae and to PMS1 of the yeast Saccharomyces cerevisiae.

By J A Mankovich, C A McIntyre and G C Walker

Abstract

The mutL gene of Salmonella typhimurium LT2 is required for dam-dependent methyl-directed DNA mismatch repair. We have cloned and sequenced the mutL gene of S. typhimurium LT2 and compared its sequence with those of the hexB gene product of the gram-positive bacterium Streptococcus pneumoniae and the PMS1 gene product of the yeast Saccharomyces cerevisiae. MutL was found to be quite similar to the HexB mismatch repair protein of S. pneumoniae and to the mismatch repair protein PMS1 of the yeast S. cerevisiae. The significant similarities among these proteins were confined to their amino-terminal regions and suggest common evolution of the mismatch repair machinery in those organisms. The DNA sequence for mutL predicted a gene encoding a protein of 618 amino acid residues with a molecular weight of 67,761. The assignment of reading frame was confirmed by the construction of a chimeric protein consisting of the first 30 amino acids of LacZ fused to residues 53 through 618 of MutL. Interestingly, the presence of excess amounts of this fusion protein in wild-type mutL+ cells resulted in a trans-dominant effect causing the cell to exhibit a high spontaneous mutation frequency

Topics: Research Article
Year: 1989
DOI identifier: 10.1128/jb.171.10.5325-5331.1989
OAI identifier: oai:pubmedcentral.nih.gov:210369
Provided by: PubMed Central
Sorry, our data provider has not provided any external links therefore we are unable to provide a link to the full text.

Suggested articles


To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.