Location of Repository

A tetracycline efflux gene on Bacteroides transposon Tn4400 does not contribute to tetracycline resistance.

By B S Speer and A A Salyers

Abstract

Previously, we demonstrated that the Bacteroides transposon Tn4351, which confers tetracycline resistance only on aerobically grown Escherichia coli, carries a gene that codes for a tetracycline-inactivating enzyme (B. S. Speer and A. A. Salyers, J. Bacteriol. 170:1423-1429, 1988). However, Park et al. (B. H. Park, M. Hendricks, M. H. Malamy, F. P. Tally, and S. B. Levy, Antimicrob. Agents Chemother. 31:1739-1743, 1987) showed that E. coli carrying a closely related transposon, Tn4400, exhibits energy-dependent efflux of tetracycline as well as tetracycline-inactivating activity (B. H. Park and S. B. Levy, Antimicrob. Agents Chemother. 32:1797-1800, 1988). This result raised the question of whether efflux or inactivation or a combination of the two was necessary for resistance conferred by both transposons. We showed that cells carrying Tn4351 did not exhibit the clear-cut efflux activity seen with cells carrying Tn4400 but rather exhibited a tetracycline accumulation profile which could be explained solely on the basis of inactivation of tetracycline in the cytoplasm and rapid diffusion of altered tetracycline out of the cell. Additionally, we were able to clone the efflux and tetracycline-modifying genes of Tn4400 separately. The region carrying the efflux gene spanned one of the two regions in which Tn4400 differs from Tn4351. A clone containing the corresponding region of Tn4351 did not exhibit efflux. Thus, it appears that Tn4351 does not have the efflux gene and that efflux makes no contribution to the resistance conferred by Tn4351. The MIC for cells carrying the subclone from Tn4400 that contained only the gene for tetracycline inactivation was the same that for cells carrying both the inactivation and efflux genes. Cells carrying only the gene for tetracycline efflux were tetracycline sensitive. This was true even when the efflux gene was on a high-copy-number plasmid which increased the level of efflux to that associated with the Tcr gene on pBR328. These results indicate that efflux activity does not contribute significantly to the tetracycline resistance conferred by Tn4400

Topics: Research Article
Year: 1990
OAI identifier: oai:pubmedcentral.nih.gov:208431
Provided by: PubMed Central
Sorry, our data provider has not provided any external links therefore we are unable to provide a link to the full text.

Suggested articles


To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.