Skip to main content
Article thumbnail
Location of Repository

The active form of the KorB protein encoded by the Streptomyces plasmid pIJ101 is a processed product that binds differentially to the two promoters it regulates.

By J T Tai and S N Cohen


The korB gene of Streptomyces lividans plasmid pIJ101 is known to encode an autoregulated protein that also represses transcription of a gene, kilB, implicated in pIJ101 transfer and in spreading of the plasmid along mycelia of the recipient. Earlier work has indicated that the primary gene product of korB is a 10-kDa protein predicted from the gene sequence (D.S. Stein and S.N. Cohen, Mol. Gen. Genet. 222:337-344, 1990; S. Zamen H. Richards, and J. Ward, Nuleic Acids Res. 20:3693-3700, 1992). We report here that the 10-kDa KorB protein product is processed in vivo into a 6-kDa peptide that has a 20-fold-greater binding affinity for its operator-promoter target; in addition, the 6-kDa peptide binds differentially to the regulatory regions of the two genes it controls, showing 50-fold-greater affinity for the kilB sequence. While both the processed and unprocessed forms of KorB were observed in Escherichia coli following korB gene expression under control of the bacteriophage T7 promoter, only the 6-kDa peptide was found in S. lividans containing pIJ101, implying that this peptide is normally the biologically active form of KorB. The footprint resulting from KorB binding to the korB operator sequence overlaps the sti locus, which affects pIJ101 copy number and incompatibility as well as the size of zones of inhibited recipient cell growth ("pocks") that form around donor cells during mating. The observed ability of the korB gene product to interact with both sti sequences and the kilB promoter region suggests that it may have a role in coordinating the replication and intramycelial spread of plasmids during and/or following bacterial mating

Topics: Research Article
Year: 1993
OAI identifier:
Provided by: PubMed Central
Sorry, our data provider has not provided any external links therefore we are unable to provide a link to the full text.

Suggested articles

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.