Article thumbnail
Location of Repository

Betaine Transport Imparts Osmotolerance on a Strain of Lactobacillus acidophilus

By Robert W. Hutkins, William L. Ellefson and Eva R. Kashket


Unlike most Lactobacillus acidophilus strains, a specific strain, L. acidophilus IFO 3532, was found to grow in rich medium containing 1 M sodium acetate, KCl, or NaCl. This strain could also grow with up to 1.8 M NaCl or 3 M nonelectrolytes (fructose, xylose, or sorbitol) added. Thus, this strain was tolerant to osmotic pressures up to 2.8 osM. A search for an intracellular solute which conferred osmoprotection led to the identification of glycine betaine (betaine). Betaine was accumulated to high concentrations in cells growing in MRS medium supplemented with 1 M KCl or NaCl. Uptake of [(14)C]betaine by L. acidophilus 3532 cells suspended in buffer was stimulated by increasing the medium osmotic pressure with 1 M KCl or NaCl. The accumulated betaine was not metabolized further; transport was relatively specific for betaine and was dependent on an energy source. Other lactobacilli, more osmosensitive than strain 3532, including L. acidophilus strain E4356, L. bulgaricus 8144, and L. delbrueckii 9649, showed lower betaine transport rates in response to an osmotic challenge than L. acidophilus 3532. Experiments with chloramphenicol-treated L. acidophilus 3532 cells indicated that the transport system was not induced but appeared to be activated by an increase in osmotic pressure

Topics: Physiology and Biotechnology
Year: 1987
OAI identifier:
Provided by: PubMed Central
Sorry, our data provider has not provided any external links therefore we are unable to provide a link to the full text.

Suggested articles

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.