Article thumbnail

Understanding the rate performance of microporous carbons in aqueous electrolytes

By Ivan Aldama, Maria Angeles Lillo-Rodenas, Mirko Kunowsky, Joaquin Ibañez and José M. Rojo

Abstract

Variation of specific capacitance versus current density is studied for microporous carbons. Although literature states that capacitance retention is higher for macro/mesoporous than for microporous carbons, the results reported here show that high capacitance retention can be reached for microporous carbons in combination with aqueous electrolytes (2M H2SO4, 1M KOH and 6M KOH). Six carbon monoliths are studied; three pristine ones and those three heat-treated, so as to reduce their content of surface oxygen groups and develops porosity. The capacitance retention is analyzed based on five parameters: electronic conductivity, surface chemistry and porosity of the monoliths, ionic conductivity and type of electrolyte. The capacitance retention is higher for the monoliths working as negative (H3O+ and K+) electrodes than as positive (HSO4− and OH−) ones, being these results of interest for the use of carbon monoliths in asymmetric and hybrid supercapacitors. The highest capacitance retention is obtained by combining (i) monolith electronic conductivity of 11–14 Scm−1 and micropore size of 0.6–0.8 nm for H3O+, K+ and HSO4−, and of 0.85–0.95 nm for OH−; (ii) electrolyte ionic conductivity above 600 mScm−1 and 6M KOH electrolyte, since this electrolyte performs better than 2M H2SO4 and 1M KOH.Funding through the PID2019-104717RB-I00 project is acknowledged to Spanish MICINN

Topics: Capacitance retention, Rate performance, H2SO4 electrolyte, KOH electrolyte, Microporous carbon monoliths, Química Inorgánica
Publisher: 'Elsevier BV'
Year: 2020
DOI identifier: 10.1016/j.electacta.2020.136408
OAI identifier: oai:rua.ua.es:10045/107910
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://hdl.handle.net/10045/10... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.