Skip to main content
Article thumbnail
Location of Repository

Solid-state 13C nuclear magnetic resonance spectroscopy of simultaneously metabolized acetate and phenol in a soil Pseudomonas sp.

By A S Heiman and W T Cooper


We investigated concentration-dependent primary and secondary substrate relationships in the simultaneous metabolism of the ubiquitous pollutant phenol and the naturally occurring substrate acetate by a Pseudomonas sp. soil isolate capable of utilizing either substance as a sole source of carbon and energy. In addition to conventional analytical techniques, solid-state 13C nuclear magnetic resonance spectroscopy was used to follow the cellular distribution of [1-13C]acetate in the presence of unlabeled phenol. With 5 mM acetate as the primary substrate, Pseudomonas sp. 9S8D2 removed 1 mM phenol (secondary substrate) at a rate of 2 nmol/mg of total cell protein. Although extensive acetate metabolism was indicated by a significant redistribution of the carboxyl label, this redistribution was not affected by the presence of phenol as a secondary substrate. When the primary and secondary substrate roles were reversed, however, the presence of 1 mM phenol altered the metabolism of 0.1 mM acetate, as evidenced by both the two- to fourfold increases in carboxyl label that appeared in terminal methyl and acyl chain methylene carbon resonances and the decrease in label that occurred in the carbohydrate spectral region. These results suggest that, when phenol is present as the primary substrate, acetate is preferentially shuttled into fatty acyl chain synthesis, whereas phenol carbon is funnelled into the tricarboxylic acid cycle. Thus, simultaneous use of a xenobiotic compound and a natural substrate apparently does occur, and the relative concentrations of the two substrates do influence the rate and manner in which the compounds are utilized.(ABSTRACT TRUNCATED AT 250 WORDS

Topics: Research Article
Year: 1987
OAI identifier:
Provided by: PubMed Central
Sorry, our data provider has not provided any external links therefore we are unable to provide a link to the full text.

Suggested articles

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.