Computational Study of Hydrogen Shifts and Ring-Opening Mechanisms in alpha-Pinene Ozonolysis Products


Autoxidation by: sequential peroxy radical hydrogen shifts (H-shifts) and O-2 additions has recently emerged as a promising mechanism for the rapid formation of highly oxidized, low-Volatility organic Compounds in the. atmosphere: A kg prerequisite for auto)ddation is that the H-shifts of the initial peroxy radicals formed by, e.g., OH or O-3 oxidation are fast enough to compete with bimolecular sink reactions. In most atmospheric conditions, these restrict the lifetime Of peroxy.radicals to be on the order of seconds. We have systematically investigated all potentially important (nonmethyl, sterically unhindered) H-shifts of all four peroxy radicals formed in the ozonolysis of alpha-pinene using density functional (omega B97XD) and coupled cluster [CCSD(T)-F12] theory. In contrast to the related but chemically simpler tyclohexene ozonolysis system, none of the calculated li-shifts have rate constants above 1 s(-1) at 298 K, and most are below 0.01 s(-1). The law rate constants are connected to the presence of the' strained tyclobutyi sing in the alpha-pinene-derived peroxy radicals, which hinders H-shifts both from and across the ring. For autoxidation to yield the experimentally observed highly oxidized products in the alpha-pinene ozonolysis system, additional ring-opening reaction mechanisms breaking the cyclobutyl ring are therefore needed. We further investigate possible uni- and bimolecular pathways for,opening the cydobutyl ring in, the alpha-pinene ozonolysis system.Peer reviewe

Similar works

This paper was published in Helsingin yliopiston digitaalinen arkisto.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.