Article thumbnail
Location of Repository

Characterization of a glucose transport system in Vibrio parahaemolyticus.

By R I Sarker, W Ogawa, M Tsuda, S Tanaka and T Tsuchiya

Abstract

Cells of a glucose-PTS (phosphoenolpyruvate:carbohydrate phosphotransferase system)-negative mutant of Vibrio parahaemolyticus transport D-glucose in the presence of Na+. Maximum stimulation of D-glucose transport was observed at 40 mM NaCl, and Na+ could be replaced partially with Li+. Addition of D-glucose to the cell suspension under anaerobic conditions elicited Na+ uptake. Thus, we conclude that glucose is transported by a Na+/glucose symport mechanism. Calculated Vmax and Km values for the Na(+)-dependent D-glucose transport were 15 nmol/min/mg of protein and 0.57 mM, respectively, when NaCl was added at 40 mM. Na+ lowered the Km value without affecting the Vmax value. D-Glucose was the best substrate for this transport system, followed by galactose, alpha-D-fucose, and methyl-alpha-glucoside, judging from the inhibition pattern of the glucose transport. D-Glucose itself partly repressed the transport system when cells were grown in its presence

Topics: Research Article
Year: 1994
DOI identifier: 10.1128/jb.176.23.7378-7382.1994
OAI identifier: oai:pubmedcentral.nih.gov:197129
Provided by: PubMed Central
Sorry, our data provider has not provided any external links therefore we are unable to provide a link to the full text.

Suggested articles


To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.