Skip to main content
Article thumbnail
Location of Repository

Engineering asymmetric vesicles

By Sophie Pautot, Barbara J. Frisken and D. A. Weitz

Abstract

Vesicles are bilayers of lipid molecules enclosing a fixed volume of aqueous solution. Ubiquitous in cells, they can be produced in vitro to study the physical properties of biological membranes and for use in drug delivery and cosmetics. Biological membranes are, in fact, a fluid mosaic of lipids and other molecules; the richness of their chemical and mechanical properties in vivo is often dictated by an asymmetric distribution of these molecules. Techniques for vesicle preparation have been based on the spontaneous assembly of lipid bilayers, precluding the formation of such asymmetric structures. Partial asymmetry has been achieved only with chemical methods greatly restricting the study of the physical and chemical properties of asymmetric vesicles and their use in potential applications for drug delivery. Here we describe the systematic engineering of unilamellar vesicles assembled with two independently prepared monolayers; this process produces asymmetries as high as 95%. We demonstrate the versatility of our method by investigating the stability of the asymmetry. We also use it to engineer hybrid structures comprised of an inner leaflet of diblock copolymer and an independent lipid outer leaflet

Topics: Biological Sciences
Publisher: National Academy of Sciences
Year: 2003
DOI identifier: 10.1073/pnas.1931005100
OAI identifier: oai:pubmedcentral.nih.gov:196870
Provided by: PubMed Central
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://dx.doi.org/10.1073/pnas... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.