Article thumbnail
Location of Repository

Utilization of Carbon Substrates, Electrophoretic Enzyme Patterns, and Symbiotic Performance of Plasmid-Cured Clover Rhizobia

By J. Ivo Baldani, R. W. Weaver, M. F. Hynes and B. D. Eardly

Abstract

Plasmids in Rhizobium spp. are relatively large, numerous, and difficult to cure. Except for the symbiotic plasmid, little is known about their functions. The primary objective of our investigation was to obtain plasmid-cured derivatives of Rhizobium leguminosarum bv. trifolii by using a direct selection system and to determine changes in the phenotype of the cured strains. Three strains of rhizobia were utilized that contained three, four, and five plasmids. Phenotypic effects observed after curing of plasmids indicated that the plasmids were involved in the utilization of adonitol, arabinose, catechol, glycerol, inositol, lactose, malate, rhamnose, and sorbitol and also influenced motility, lipopolysaccharide production, and utilization of nitrate. Specific staining of 26 enzymes electrophoretically separated on starch gels indicated that superoxide dismutase, hexokinase, and carbamate kinase activities were affected by curing of plasmids. Curing of cryptic plasmids also influenced nodulation and growth of plants on nitrogen-deficient media. The alteration in the ability to utilize various substrates after curing of plasmids suggests that the plasmids may encode genes that contribute significantly to the saprophytic competence of rhizobia in soil

Topics: Microorganism-Plant Interactions
Year: 1992
OAI identifier: oai:pubmedcentral.nih.gov:195773
Provided by: PubMed Central
Sorry, our data provider has not provided any external links therefore we are unable to provide a link to the full text.

Suggested articles


To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.