Article thumbnail
Location of Repository

Utilization of cyanide as nitrogenous substrate by Pseudomonas fluorescens NCIMB 11764: evidence for multiple pathways of metabolic conversion.

By D A Kunz, O Nagappan, J Silva-Avalos and G T Delong


The growth of Pseudomonas fluorescens NCIMB 11764 on cyanide as the sole nitrogen source was accomplished by use of a modified fed-batch cultivation procedure. Previous studies showing that cyanide metabolism in this organism is both an oxygen-dependent and an inducible process, with CO2 and ammonia representing conversion products, were confirmed. However, washed cells (40 mg ml-1 [dry weight]) metabolized cyanide at concentrations far exceeding those previously described; 85% of 50 mM KCN was degraded in 6 h. In addition, two other C1 metabolites were detected in incubation mixtures; their identities were confirmed as formamide and formate by 13C nuclear magnetic resonance spectrocopy, high-pressure liquid chromatography, radioisotopic trapping experiments, and other analytical means. The relative yields of all four metabolites (CO2, formamide, formate, and ammonia) were shown to be dependent on the KCN concentration and availability of oxygen; at 0.5 to 10 mM substrate, CO2 was the major C1 product, whereas at 20 and 50 mM substrate, formamide and formate were principally formed. The latter two metabolites also accumulated during prolonged anaerobic incubation, suggesting that P. fluorescens NCIMB 11764 can elaborate several pathways of cyanide conversion. One is formally similar to that proposed previously (R. E. Harris and C. J. Knowles, FEMS Microbiol. Lett. 20:337-341, 1983), involving the oxygen-dependent conversion of cyanide to CO2 and ammonia. The other two, occurring in the presence or absence of oxygen, involve separate reactions to yield, respectively, formate plus ammonia or formamide.(ABSTRACT TRUNCATED AT 250 WORDS

Topics: Research Article
Year: 1992
OAI identifier:
Provided by: PubMed Central
Sorry, our data provider has not provided any external links therefore we are unable to provide a link to the full text.

Suggested articles

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.