Article thumbnail
Location of Repository

Posttranslational regulation of nitrogenase in Rhodobacter capsulatus: existence of two independent regulatory effects of ammonium.

By J Pierrard, P W Ludden and G P Roberts

Abstract

In the photosynthetic bacterium Rhodobacter capsulatus, nitrogenase activity is regulated by ADP-ribosylation of component II in response to the addition of ammonium to cultures or to the removal of light. The ammonium stimulus results in a fast and almost complete inhibition of the in vivo acetylene reduction activity, termed switch-off, which is reversed after the ammonium is exhausted. In the present study of the response of cells to ammonium, ADP-ribosylation of component II occurred but could not account for the extent and timing of the inhibition of activity. The presence of an additional response was confirmed with strains expressing mutant component II proteins; although these proteins are not a substrate for ADP-ribosylation, the strains continued to exhibit a switch-off response to ammonium. This second regulatory response of nitrogenase to ammonium was found to be synchronous with ADP-ribosylation and was responsible for the bulk of the observed effects on nitrogenase activity. In comparison, ADP-ribosylation in R. capsulatus was found to be relatively slow and incomplete but responded independently to both known stimuli, darkness and ammonium. Based on the in vitro nitrogenase activity of both the wild type and strains whose component II proteins cannot be ADP-ribosylated, it seems likely that the second response blocks either the ATP or the electron supply to nitrogenase

Topics: Research Article
Year: 1993
DOI identifier: 10.1128/jb.175.5.1358-1366.1993
OAI identifier: oai:pubmedcentral.nih.gov:193222
Provided by: PubMed Central
Sorry, our data provider has not provided any external links therefore we are unable to provide a link to the full text.

Suggested articles


To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.