Article thumbnail
Location of Repository

The oxygen sensor FixL of Rhizobium meliloti is a membrane protein containing four possible transmembrane segments.

By A F Lois, G S Ditta and D R Helinski


Regulation of nitrogen fixation genes in Rhizobium meliloti is mediated by two proteins, FixL and FixJ, in response to oxygen availability. FixL is an oxygen-binding hemoprotein with kinase and phosphatase activities that is thought to sense oxygen levels directly and to transmit this signal to FixJ via phosphorylation-dephosphorylation reactions. FixJ controls the expression of other regulatory genes, including nifA, that regulate the transcription of genes required for symbiotic nitrogen fixation. We have been studying the structural and functional features of FixL that are required for oxygen sensing. We constructed mutant derivatives and confirmed that FixL consists of 505 amino acids instead of 464, as originally reported. Hydropathy plots of the full-length protein, together with TnphoA insertional analysis, lead us to propose that FixL is likely to be a polytopic integral membrane protein containing four membrane-spanning segments. We have also constructed an N-terminal deletion of the FixL protein whose in vivo activity indicates that the hydrophobic membrane-spanning regions are not absolutely required for oxygen sensing in vivo. We also report that FixL shares homology in its N terminus with other sensor proteins, including KinA from Bacillus subtilis and NtrB from Bradyrhizobium parasponia. The region of homology comprises a 70-amino-acid residue stretch that is also conserved in two oxygenases, P-450 and isopenicillin synthase

Topics: Research Article
Year: 1993
DOI identifier: 10.1128/jb.175.4.1103-1109.1993
OAI identifier:
Provided by: PubMed Central
Sorry, our data provider has not provided any external links therefore we are unable to provide a link to the full text.

Suggested articles

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.