Location of Repository

Identification of two amino acids in the hemagglutinin glycoprotein of measles virus (MV) that govern hemadsorption, HeLa cell fusion, and CD46 downregulation: phenotypic markers that differentiate vaccine and wild-type MV strains.

By V Lecouturier, J Fayolle, M Caballero, J Carabaña, M L Celma, R Fernandez-Muñoz, T F Wild and R Buckland


We have used site-directed mutagenesis of the hemagglutinin (H) glycoprotein of measles virus (MV) to investigate the molecular basis for the phenotypic differences observed between MV vaccine strains and recently isolated wild-type MV strains. The former downregulate CD46, the putative cellular receptor of MV, are positive for hemadsorption, and are fusogenic in HeLa cells, whereas the latter are negative for these phenotypic markers. CD46 downregulation in particular, could have profound consequences for the immunopathology of MV infection, as this molecule protects the cell from complement lysis. Mutagenesis of two amino acids, valine and tyrosine at positions 451 and 481, respectively, in the H protein from the vaccine-like Hallé MV strain to their counterparts, glutamate and asparagine, in the H protein from the wild-type Ma93F MV strain (creating the V451E/Y481N double mutation) abrogated CD46 downregulation, HeLa cell fusion, and hemadsorption. The converse double mutagenesis of the Ma93F H protein (E451V/N481Y) transferred the CD46-downregulating, fusogenic, and hemadsorption functions to this protein. The data provide the first mapping study of the functional domains of MV H. The consequences of these results for MV vaccine design and the role of CD46 in MV infection are discussed

Topics: Research Article
Year: 1996
OAI identifier: oai:pubmedcentral.nih.gov:190349
Provided by: PubMed Central
Sorry, our data provider has not provided any external links therefore we are unable to provide a link to the full text.

Suggested articles

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.