Skip to main content
Article thumbnail
Location of Repository

Mechanism-Based Inactivation of Ammonia Monooxygenase in Nitrosomonas europaea by Allylsulfide

By Lisa Y. Juliette, Michael R. Hyman and Daniel J. Arp


Allylsulfide caused an irreversible inactivation of ammonia monooxygenase (AMO) activity (ammonia-dependent O2 uptake) in Nitrosomonas europaea. The hydroxylamine oxidoreductase activity (hydrazine-dependent O2 uptake) of cells was unaffected by allylsulfide. Anaerobic conditions or the presence of allylthiourea, a reversible noncompetitive AMO inhibitor, protected AMO from inactivation by allylsulfide. Ammonia did not protect AMO from inactivation by allylsulfide but instead increased the rate of inactivation. The inactivation of AMO followed pseudo-first-order kinetics, but the observed rates did not saturate with increasing allylsulfide concentrations. The time course of recovery of AMO-dependent nitrite production after complete inactivation by allylsulfide required de novo protein synthesis. Incubation of cells with allylsulfide prevented the 14C label from 14C2H2 (a suicide mechanism-based inactivator of AMO) from being incorporated into the 27-kDa polypeptide of AMO. Some compounds structurally related to allylsulfide were unable to inactivate AMO. We conclude that allylsulfide is a specific, mechanism-based inactivator of AMO in N. europaea

Topics: Physiology and Biotechnology
Year: 1993
OAI identifier:
Provided by: PubMed Central
Sorry, our data provider has not provided any external links therefore we are unable to provide a link to the full text.

Suggested articles

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.