Skip to main content
Article thumbnail
Location of Repository

Differential Caveolin-1 Polarization in Endothelial Cells during Migration in Two and Three Dimensions

By Marie-Odile Parat, Bela Anand-Apte and Paul L. Fox


Endothelial cell (EC) migration is a critical event during multiple physiological and pathological processes. ECs move in the plane of the endothelium to heal superficially injured blood vessels but migrate in three dimensions during angiogenesis. We herein investigate differences in these modes of movement focusing on caveolae and their defining protein caveolin-1. Using a novel approach for morphological analysis of transmigrating cells, we show that ECs exhibit a polarized distribution of caveolin-1 when traversing a filter pore. Strikingly, in these cells caveolin-1 seems to be released from caveolar structures in the cell rear and to relocalize at the cell front in a cytoplasmic form. In contrast, during planar movement caveolin-1 is concentrated at the rear of ECs, colocalizing with caveolae. The phosphorylatable Tyr14 residue of caveolin-1 is required for polarization of the protein during transmigration but does not alter polarization during planar movement. Palmitoylation of caveolin-1 is not essential for redistribution of the protein during either mode of movement. Thus, ECs migrating in three dimensions uniquely exhibit dissociation of caveolin-1 from caveolae and phosphorylation-dependent relocalization to the cell front

Topics: Articles
Publisher: The American Society for Cell Biology
Year: 2003
DOI identifier: 10.1091/mbc.E02-11-0761
OAI identifier:
Provided by: PubMed Central
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.