Skip to main content
Article thumbnail
Location of Repository

Repression of the cob operon of Salmonella typhimurium by adenosylcobalamin is influenced by mutations in the pdu operon.

By M Ailion and J R Roth

Abstract

The cob operon encodes functions needed for the biosynthesis of adenosylcobalamin (Ado-B12). Propanediol induces transcription of the cob operon and the neighboring pdu operon, which encodes proteins for the B12-dependent degradation of propanediol. Expression of the cob (but not the pdu) operon is repressed by exogenous cyanocobalamin. Evidence is provided that cob operon repression is signaled by internally generated Ado-B12, which can be formed either by the CobA adenosyltransferase or by an alternative adenosyltransferase (AdoT) that we infer is encoded within the pdu operon. Repression is also affected by mutations (AdoB) in the pdu operon that map upstream of the inferred pdu adenosyltransferase gene. Such mutations allow cobalamin to mediate repression at concentrations 100-fold lower than those needed in the wild type. It is proposed that these mutations eliminate a component of the propanediol dehydratase enzyme complex (PduCDE) and that this complex competes with the cob regulatory mechanism for a limited supply of Ado-B12

Topics: Research Article
Year: 1997
OAI identifier: oai:pubmedcentral.nih.gov:179512
Provided by: PubMed Central
Sorry, our data provider has not provided any external links therefore we are unable to provide a link to the full text.

Suggested articles


To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.