Article thumbnail
Location of Repository

Escherichia coli SecB stimulates export without maintaining export competence of ribose-binding protein signal sequence mutants.

By O Francetic and C A Kumamoto


Ribose-binding protein (RBP) is exported to the periplasm of Escherichia coli via the general export pathway. An rbsB-lacZ gene fusion was constructed and used to select mutants defective in RBP export. The spontaneous Lac+ mutants isolated in this selection contained either single-amino-acid substitutions or a deletion of the RBP signal sequence. Intact rbsB genes containing eight different point mutations in the signal sequence were reconstructed, and the effects of the mutations on RBP export were examined. Most of the mutations caused severe defects in RBP export. In addition, different suppressor mutations in SecY/PrlA protein were analyzed for their effects on the export of RBP signal sequence mutants in the presence or absence of SecB. Several RBP signal sequence mutants were efficiently suppressed, but others were not suppressed. Export of an RBP signal sequence mutant in prlA mutant strains was partially dependent on SecB, which is in contrast to the SecB independence of wild-type RBP export. However, the kinetics of export of an RBP signal sequence mutant point to a rapid loss of pre-RBP export competence, which occurs in strains containing or lacking SecB. These results suggest that SecB does not stabilize the export-competent conformation of RBP and may affect translocation by stabilizing the binding of pre-RBP at the translocation site

Topics: Research Article
Year: 1996
DOI identifier: 10.1128/jb.178.20.5954-5959.1996
OAI identifier:
Provided by: PubMed Central
Sorry, our data provider has not provided any external links therefore we are unable to provide a link to the full text.

Suggested articles

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.