Skip to main content
Article thumbnail
Location of Repository

Isolation and nucleotide sequence of the GDP-mannose:cellobiosyl-diphosphopolyprenol alpha-mannosyltransferase gene from Acetobacter xylinum.

By E A Petroni and L Ielpi


A genetic locus from Acetobacter xylinum involved in acetan polysaccharide synthesis has been characterized. The chromosomal region was identified by screening a genomic library of A. xylinum in a Xanthomonas campestris mutant defective in xanthan polysaccharide synthesis. The A. xylinum cosmid clone can functionally complement a xanthan-negative mutant. The polymer produced by the recombinant strain was found to be indistinguishable from xanthan. Insertion mutagenesis and subcloning of the cosmid clone combined with complementation studies allowed the identification of a 2.3-kb fragment of A. xylinum chromosomal DNA. The nucleotide sequence of this fragment was analyzed and found to contain an open reading frame (aceA) of 1,182 bp encoding a protein of 43.2 kDa. Results from biochemical and genetic analyses strongly suggest that the aceA gene encodes the GDP-mannose:cellobiosyl-diphosphopolyprenol alpha-mannosyltransferase enzyme, which is responsible for the transfer of an alpha-mannosyl residue from GDP-Man to cellobiosyl-diphosphopolyprenol. A search for similarities with other known mannosyltransferases revealed that all bacterial alpha-mannosyltransferases have a short COOH-terminal amino acid sequence in common

Topics: Research Article
Year: 1996
OAI identifier:
Provided by: PubMed Central
Sorry, our data provider has not provided any external links therefore we are unable to provide a link to the full text.

Suggested articles

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.