Skip to main content
Article thumbnail
Location of Repository

Metabolic stoichiometry and the fate of excess carbon and nutrients in consumers

By Thomas R. Anderson, Dag O. Hessen, James J. Elser and Jotaro Urabe


Animals encountering nutritionally imbalanced foods should release elements in excess of requirements in order to maintain overall homeostasis. Quantifying these excesses and predicting their fate is, however, problematic. A new model of the stoichiometry of consumers is formulated that incorporates the separate terms in the metabolic budget, namely, assimilation of ingested substrates and associated costs, protein turnover, other basal costs, such as osmoregulation, and the use of remaining substrates for production. The model indicates that release of excess C and nonlimiting nutrients may often be a significant fraction of the total metabolic budget of animals consuming the nutrient-deficient forages that are common in terrestrial and aquatic systems. The cost of maintenance, in terms of not just C but also N and P, is considerable, such that food quality is important even when intake is low. Many generalist consumers experience short-term and unpredictable fluctuations in their diets. Comparison of model output with data for one such consumer, Daphnia, indicates that mechanisms operating postabsorption in the gut are likely the primary means of regulating excess C, N, and P in these organisms, notably respiration decoupled from biochemical or mechanical work and excretion of carbon and nutrients. This stoichiometrically regulated release may often be in organic rather than inorganic form, with important consequences for the balance of autotrophic and heterotrophic processes in ecosystems

Topics: QH301
Year: 2005
OAI identifier:
Provided by: e-Prints Soton
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.