Article thumbnail
Location of Repository

Functional proteomic analysis of GS-NS0 murine myeloma cell lines with varying recombinant monoclonal antibody production rate

By Diane M. Dinnis, Scott H. Stansfield, Stefan Schlatter, Christopher Mark Smales, Daniel E. Alete, John R. Birch, Andrew J. Racher, Carol T. Marshal, Lars K. Nielsen and David C. James


We previously compared changes in individual protein abundance between the proteomes of GS-NSO cell lines with varying rates of cell-specific recombinant monoclonal antibody production (qMab). Here we extend analyses of our proteomic clataset to statistically determine if particular cell lines have distinct functional capabilities that facilitate production of secreted recombinant Mab. We categorized 79 proteins identified by mass spectrometry according to their biological function or location in the cell and statistically compared the relative abundance of proteins in each category between GS-NSO cell lines with varying qMab. We found that the relative abundance of proteins in ER chaperone, non-ER chaperone, cytoskeletal, cell signaling, metabolic, and mitochondrial categories were significantly increased with qMab. As the GS-NSO cell line with highest qMab also had an increased intracellular abundance of unassembled Mab heavy chain (HC), we tested the hypothesis that the increased ER chaperone content was caused by induction of an unfolded protein response (UPR) signaling pathway. Immunoblot analyses revealed that spliced X-box binding protein 1 (XBP1), a marker for UPR induction, was not detectable in the GS-NSO cells with elevated qMab, although it was induced by chemical inhibitors of protein folding. These data suggest that qMab is functionally related to the abundance of specific categories of proteins that together facilitate recombinant protein production. We infer that individual cells within parental populations are more functionally equipped for high-level recombinant protein production than others and that this bias could be used to select cells that are more likely to achieve high qMab

Topics: Q
Publisher: John Wiley & Son
Year: 2006
DOI identifier: 10.1002/bit.20899
OAI identifier:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.