Article thumbnail
Location of Repository

Mice deficient in α-actinin-4 have severe glomerular disease

By Claudine H. Kos, Tu Cam Le, Sumita Sinha, Joel M. Henderson, Sung Han Kim, Hikaru Sugimoto, Raghu Kalluri, Robert E. Gerszten and Martin R. Pollak

Abstract

Dominantly inherited mutations in ACTN4, which encodes α-actinin-4, cause a form of human focal and segmental glomerulosclerosis (FSGS). By homologous recombination in ES cells, we developed a mouse model deficient in Actn4. Mice homozygous for the targeted allele have no detectable α-actinin-4 protein expression. The number of homozygous mice observed was lower than expected under mendelian inheritance. Surviving mice homozygous for the targeted allele show progressive proteinuria, glomerular disease, and typically death by several months of age. Light microscopic analysis shows extensive glomerular disease and proteinaceous casts. Electron microscopic examination shows focal areas of podocyte foot-process effacement in young mice, and diffuse effacement and globally disrupted podocyte morphology in older mice. Despite the widespread distribution of α-actinin-4, histologic examination of mice showed abnormalities only in the kidneys. In contrast to the dominantly inherited human form of ACTN4-associated FSGS, here we show that the absence of α-actinin-4 causes a recessive form of disease in mice. Cell motility, as measured by lymphocyte chemotaxis assays, was increased in the absence of α-actinin-4. We conclude that α-actinin-4 is required for normal glomerular function. We further conclude that the nonsarcomeric forms of α-actinin (α-actinin-1 and α-actinin-4) are not functionally redundant. In addition, these genetic studies demonstrate that the nonsarcomeric α-actinin-4 is involved in the regulation of cell movement

Topics: Article
Publisher: American Society for Clinical Investigation
Year: 2003
DOI identifier: 10.1172/JCI200317988
OAI identifier: oai:pubmedcentral.nih.gov:156110
Provided by: PubMed Central
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://dx.doi.org/10.1172/JCI2... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.