Article thumbnail
Location of Repository

T Cells Infiltrate the Brain in Murine and Human Transmissible Spongiform Encephalopathies

By Hanna Lewicki, Antoinette Tishon, Dirk Homann, Honoré Mazarguil, Françoise Laval, Valerie C. Asensio, Iain L. Campbell, Stephen DeArmond, Bryan Coon, Chao Teng, Jean Edouard Gairin and Michael B. A. Oldstone

Abstract

CD4 and CD8 T lymphocytes infiltrate the parenchyma of mouse brains several weeks after intracerebral, intraperitoneal, or oral inoculation with the Chandler strain of mouse scrapie, a pattern not seen with inoculation of prion protein knockout (PrP(−/−)) mice. Associated with this cellular infiltration are expression of MHC class I and II molecules and elevation in levels of the T-cell chemokines, especially macrophage inflammatory protein 1β, IFN-γ-inducible protein 10, and RANTES. T cells were also found in the central nervous system (CNS) in five of six patients with Creutzfeldt-Jakob disease. T cells harvested from brains and spleens of scrapie-infected mice were analyzed using a newly identified mouse PrP (mPrP) peptide bearing the canonical binding motifs to major histocompatibility complex (MHC) class I H-2(b) or H-2(d) molecules, appropriate MHC class I tetramers made to include these peptides, and CD4 and CD8 T cells stimulated with 15-mer overlapping peptides covering the whole mPrP. Minimal to modest K(b) tetramer binding of mPrP amino acids (aa) 2 to 9, aa 152 to 160, and aa 232 to 241 was observed, but such tetramer-binding lymphocytes as well as CD4 and CD8 lymphocytes incubated with the full repertoire of mPrP peptides failed to synthesize intracellular gamma interferon (IFN-γ) or tumor necrosis factor alpha (TNF-α) cytokines and were unable to lyse PrP(−/−) embryo fibroblasts or macrophages coated with (51)Cr-labeled mPrP peptide. These results suggest that the expression of PrP(sc) in the CNS is associated with release of chemokines and, as shown previously, cytokines that attract and retain PrP-activated T cells and, quite likely, bystander activated T cells that have migrated from the periphery into the CNS. However, these CD4 and CD8 T cells are defective in such an effector function(s) as IFN-γ and TNF-α expression or release or lytic activity

Topics: Pathogenesis and Immunity
Publisher: American Society for Microbiology
Year: 2003
DOI identifier: 10.1128/JVI.77.6.3799-3808.2003
OAI identifier: oai:pubmedcentral.nih.gov:149501
Provided by: PubMed Central
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://dx.doi.org/10.1128/JVI.... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.