Article thumbnail
Location of Repository

Role of elementary Ca(2+) puffs in generating repetitive Ca(2+) oscillations

By Jonathan S. Marchant and Ian Parker

Abstract

Inositol (1,4,5)-trisphosphate (IP(3)) liberates intracellular Ca(2+) both as localized ‘puffs’ and as repetitive waves that encode information in a frequency-dependent manner. Using video-rate confocal imaging, together with photorelease of IP(3) in Xenopus oocytes, we investigated the roles of puffs in determining the periodicity of global Ca(2+) waves. Wave frequency is not delimited solely by cyclical recovery of the cell’s ability to support wave propagation, but further involves sensitization of Ca(2+)-induced Ca(2+) release by progressive increases in puff frequency and amplitude at numerous sites during the interwave period, and accumulation of pacemaker Ca(2+), allowing a puff at a ‘focal’ site to trigger a subsequent wave. These specific ‘focal’ sites, distinguished by their higher sensitivity to IP(3) and close apposition to neighboring puff sites, preferentially entrain both the temporal frequency and spatial directionality of Ca(2+) waves. Although summation of activity from many stochastic puff sites promotes the generation of regularly periodic global Ca(2+) signals, the properties of individual Ca(2+) puffs control the kinetics of Ca(2+) spiking and the (higher) frequency of subcellular spikes in their local microdomain

Topics: Article
Publisher: Oxford University Press
Year: 2001
DOI identifier: 10.1093/emboj/20.1.65
OAI identifier: oai:pubmedcentral.nih.gov:140189
Provided by: PubMed Central
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://dx.doi.org/10.1093/embo... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.