Skip to main content
Article thumbnail
Location of Repository

Introduction: neural networks in remote sensing

By P.M. Atkinson and A.R. Tatnall

Abstract

Abstract. Over the past decade there have been considerable increases in both the quantity of remotely sensed data available and the use of neural networks. These increases have largely taken place in parallel, and it is only recently that several researchers have begun to apply neural networks to remotely sensed data. This paper introduces this special issue which is concerned specifically with the use of neural networks in remote sensing. The feed-forward back-propagation multi-layer perceptron (MLP) is the type of neural network most commonly encountered in remote sensing and is used in many of the papers in this special issue. The basic structure of the MLP algorithm is described in some detail while some other types of neural network are mentioned. The most common applications of neural networks in remote sensing are considered, particularly those concerned with the classification of land and clouds, and recent developments in these areas are described. Finally, the application of neural networks to multi-source data and fuzzy classification are considered. <br/

Topics: G1
Year: 1997
OAI identifier: oai:eprints.soton.ac.uk:17352
Provided by: e-Prints Soton
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://dx.doi.org/10.1080/0143... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.