Skip to main content
Article thumbnail
Location of Repository

Defective nucleotide excision repair in yeast hpr1 and tho2 mutants

By Sergio González-Barrera, Félix Prado, Richard Verhage, Jaap Brouwer and Andrés Aguilera


Nucleotide excision repair (NER) and transcription are intimately related. First, TFIIH has a dual role in transcription initiation and NER and, secondly, transcription leads to more efficient repair of damage present in transcribed sequences. It is thought that elongating RNAPII, stalled at a DNA lesion, is used for the loading of the NER machinery in a process termed transcription-coupled repair (TCR). Non-transcribed regions are repaired by the so-called global genome repair (GGR). We have previously defined a number of yeast genes, whose deletions confer transcription-dependent hyper-recombination phenotypes. As these mutations cause impairment of transcription elongation we have assayed whether they also affect DNA repair. We show that null mutations of the HPR1 and THO2 genes, encoding two prominent proteins of the THO complex, increase UV sensitivity of yeast cells lacking GGR. Consistent with this result, molecular analyses of DNA repair of the RPB2 transcribed strand using T4 endo V show that hpr1 and tho2 do indeed impair TCR. However, this effect is not confined to TCR alone because the mutants are slightly affected in GGR. These results indicate that THO affects both transcription and NER. We discuss different alternatives to explain the effect of the THO complex on DNA repair

Topics: Article
Publisher: Oxford University Press
Year: 2002
OAI identifier:
Provided by: PubMed Central
Sorry, our data provider has not provided any external links therefore we are unable to provide a link to the full text.

Suggested articles

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.