Skip to main content
Article thumbnail
Location of Repository

Coreceptor-Dependent Inhibition of the Cell Fusion Activity of Simian Immunodeficiency Virus Env Proteins

By Chinglai Yang, Qingyuan Yang and Richard W. Compans


The cytoplasmic tail (R peptide) sequence is able to regulate the fusion activity of the murine leukemia virus (MuLV) envelope (Env) protein. We have previously shown that this sequence exerts a profound inhibitory effect on the fusion activity of simian immunodeficiency virus (SIV)-MuLV chimeric Env proteins which contain the extracellular and transmembrane domains of the SIV Env protein. Recent studies have shown that SIV can utilize several alternative cellular coreceptors for its fusion and entry into the cell. We have investigated the fusion activity of SIV and SIV-MuLV chimeric Env proteins using cells that express different coreceptors. HeLa cells were transfected with plasmid constructs that carry the SIV or SIV-MuLV chimeric Env protein genes and were overlaid with either CEMx174 cells or Ghost Gpr15 cells, which express the Gpr15 coreceptor for SIV, or Ghost CCR5 cells, which express CCR5, an alternate coreceptor for SIV. The R-peptide sequence in the SIV-MuLV chimeric proteins was found to inhibit the fusion with CEMx174 cells or Ghost Gpr15 cells. However, a significant level of fusion was still observed when HeLa cells expressing the chimeric Env proteins were cocultivated with Ghost CCR5 cells. These results show that the R-peptide sequence exerts differential effects on the fusion activity of SIV Env proteins using target cells that express alternative coreceptors

Topics: Virus-Cell Interactions
Publisher: American Society for Microbiology
Year: 2000
OAI identifier:
Provided by: PubMed Central
Sorry, our data provider has not provided any external links therefore we are unable to provide a link to the full text.

Suggested articles

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.