Skip to main content
Article thumbnail
Location of Repository

Full Functional Rescue of a Complete Muscle (TA) in Dystrophic Hamsters by Adeno-Associated Virus Vector-Directed Gene Therapy

By Xiao Xiao, Juan Li, Yeou-Ping Tsao, Devin Dressman, Eric P. Hoffman and Jon F. Watchko


Limb girdle muscular dystrophy (LGMD) 2F is caused by mutations in the δ-sarcoglycan (SG) gene. Previously, we have shown successful application of a recombinant adeno-associated virus (AAV) vector for genetic and biochemical rescue in the Bio14.6 hamster, a homologous animal model for LGMD 2F (J. Li et al., Gene Ther. 6:74–82, 1999). In this report, we show efficient and long-term δ-SG expression accompanied by nearly complete recovery of physiological function deficits after a single-dose AAV vector injection into the tibialis anterior muscle of the dystrophic hamsters. AAV vector treatment led to more than 97% recovery in muscle strength for both the specific twitch force and the specific tetanic force, when compared to the age-matched control. Vector treatment also prevented pathological muscle hypertrophy and resulted in normal muscle weight and size. Finally, vector-treated muscle showed substantial improvement of the histopathology. This is the first report of successful functional rescue of an entire muscle after AAV-mediated gene delivery. This report also demonstrates the feasibility of in vivo gene therapy for LGMD patients by using AAV vectors

Topics: Gene Therapy
Publisher: American Society for Microbiology
Year: 2000
OAI identifier:
Provided by: PubMed Central
Sorry, our data provider has not provided any external links therefore we are unable to provide a link to the full text.

Suggested articles

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.