Skip to main content
Article thumbnail
Location of Repository

Involvement of Mitogen-Activated Protein Kinase Pathways in Staphylococcus aureus Invasion of Normal Osteoblasts

By John K. Ellington, Adam Elhofy, Kenneth L. Bost and Michael C. Hudson

Abstract

Staphylococcus aureus invades osteoblasts and can persist in the intracellular environment. The present study examined the role of osteoblast mitogen-activated protein kinase (MAPK) pathways in bacterial invasion. S. aureus infection of normal human and mouse osteoblasts resulted in an increase in the phosphorylation of the extracellular signal-regulated protein kinases (ERK 1 and 2). This stimulation of ERK 1 and 2 correlated with the time course of S. aureus invasion, and bacterial adherence induced the MAPK pathway. ERK 1 and 2 phosphorylation was time and dose dependent and required active S. aureus gene expression for maximal induction. The nonpathogenic Staphylococcus carnosus was also able to induce ERK 1 and 2 phosphorylation, albeit at lower levels than S. aureus. Phosphorylation of the stress-activated protein kinases was increased in both infected human and mouse osteoblasts; however, the p38 MAPK pathway was not activated in response to S. aureus. Finally, the transcription factor c-Jun, but not Elk-1 or ATF-2, was phosphorylated in response to S. aureus infection

Topics: Cellular Microbiology: Pathogen-Host Cell Molecular Interactions
Publisher: American Society for Microbiology
Year: 2001
DOI identifier: 10.1128/IAI.69.9.5235-5242.2001
OAI identifier: oai:pubmedcentral.nih.gov:98631
Provided by: PubMed Central
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://dx.doi.org/10.1128/IAI.... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.