Location of Repository

Substrate Specificity of Naphthalene Dioxygenase: Effect of Specific Amino Acids at the Active Site of the Enzyme

By Rebecca E. Parales, Kyoung Lee, Sol M. Resnick, Haiyan Jiang, Daniel J. Lessner and David T. Gibson

Abstract

The three-component naphthalene dioxygenase (NDO) enzyme system carries out the first step in the aerobic degradation of naphthalene by Pseudomonas sp. strain NCIB 9816-4. The three-dimensional structure of NDO revealed that several of the amino acids at the active site of the oxygenase are hydrophobic, which is consistent with the enzyme's preference for aromatic hydrocarbon substrates. Although NDO catalyzes cis-dihydroxylation of a wide range of substrates, it is highly regio- and enantioselective. Site-directed mutagenesis was used to determine the contributions of several active-site residues to these aspects of catalysis. Amino acid substitutions at Asn-201, Phe-202, Val-260, Trp-316, Thr-351, Trp-358, and Met-366 had little or no effect on product formation with naphthalene or biphenyl as substrates and had slight but significant effects on product formation from phenanthrene. Amino acid substitutions at Phe-352 resulted in the formation of cis-naphthalene dihydrodiol with altered stereochemistry [92 to 96% (+)-1R,2S], compared to the enantiomerically pure [>99% (+)-1R,2S] product formed by the wild-type enzyme. Substitutions at position 352 changed the site of oxidation of biphenyl and phenanthrene. Substitution of alanine for Asp-362, a ligand to the active-site iron, resulted in a completely inactive enzyme

Topics: Enzymes and Proteins
Publisher: American Society for Microbiology
Year: 2000
OAI identifier: oai:pubmedcentral.nih.gov:94462
Provided by: PubMed Central
Sorry, our data provider has not provided any external links therefor we are unable to provide a PDF.

Suggested articles


To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.