Article thumbnail
Location of Repository

Sheets of Symmetric Lie Algebras and Slodowy Slices

By Michaël Bulois

Abstract

38 pagesInternational audienceLet T be an involution of the finite dimensional complex reductive Lie algebra g and g=k+p be the associated Cartan decomposition. Denote by K the adjoint group of k. The K-module p is the union of the subsets p^{(m)}={x | dim K.x =m}, indexed by integers m, and the K-sheets of (g,T) are the irreducible components of the p^{(m)}. The sheets can be, in turn, written as a union of so-called Jordan K-classes. We introduce conditions in order to describe the sheets and Jordan K-classes in terms of Slodowy slices. When g is of classical type, the K-sheets are shown to be smooth; if g=gl_N a complete description of sheets and Jordan K-classes is then obtained

Topics: slodowy slice, sheets, symmetric Lie algebras, semisimple Lie algebras, 14L30, 17B20, 22E46, [MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT], [MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]
Publisher: HAL CCSD
Year: 2011
OAI identifier: oai:HAL:hal-00464531v1
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • https://hal.archives-ouvertes.... (external link)
  • https://hal.archives-ouvertes.... (external link)
  • https://hal.archives-ouvertes.... (external link)
  • http://www.heldermann.de/JLT/J... (external link)
  • https://hal.archives-ouvertes.... (external link)
  • https://hal.archives-ouvertes.... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.