Location of Repository

Somatic stiffness of cochlear outer hair cells is voltage-dependent

By David Z. Z. He and Peter Dallos

Abstract

The mammalian cochlea depends on an amplification process for its sensitivity and frequency-resolving capability. Outer hair cells are responsible for providing this amplification. It is usually assumed that the membrane–potential-driven somatic shape changes of these cells are the basis of the amplifying process. It is of interest to see whether mechanical reactance changes of the cells might accompany their changes in cell shape. We now show that the cylindrical outer hair cells change their axial stiffness as their membrane potential is altered. Cell stiffness was determined by optoelectronically measuring the amplitude of motion of a flexible vibrating fiber as it was loaded by the isolated cell. Voltage commands to the cell were delivered in a tight–seal whole–cell configuration. Cell stiffness was decreased by depolarization and increased by hyperpolarization

Topics: Biological Sciences
Publisher: The National Academy of Sciences
Year: 1999
OAI identifier: oai:pubmedcentral.nih.gov:22216
Provided by: PubMed Central
Sorry, our data provider has not provided any external links therefore we are unable to provide a link to the full text.

Suggested articles


To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.