Location of Repository

The α-helix folds on the millisecond time scale

By David T. Clarke, Andrew J. Doig, Benjamin J. Stapley and Gareth R. Jones

Abstract

It has long been believed that nucleation of the α-helix is a very fast reaction, occurring in around 10−7 s. We show here that helix nucleation, in fact, takes place on the millisecond time scale. The rate of α-helix nucleation in two polyalanine-based peptides and in lysine and glutamic acid homopolymers was measured directly by stopped-flow deep UV CD with synchrotron radiation as the light source. Synchrotron radiation CD gives far superior signal to noise than a conventional instrument. The 16-aa AK peptide folds with first-order kinetics and a rate constant of 15 s−1 at 0°C. The rate-determining step is presumably the initiation of a new helix, which occurs at least 105 times slower than expected. Helix folding occurs in at least two steps on the millisecond time scale for the longer peptides, with a transient overshoot of helix content significantly greater than at equilibrium, similar to that seen in the folding of several proteins. We suggest that the overshoot is caused by the formation of a single long helix followed by its breakage into the two or more helices present at equilibrium

Topics: Biological Sciences
Publisher: The National Academy of Sciences
Year: 1999
OAI identifier: oai:pubmedcentral.nih.gov:22062
Provided by: PubMed Central
Sorry, our data provider has not provided any external links therefor we are unable to provide a PDF.

Suggested articles


To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.