Article thumbnail

Transmission bottlenecks as determinants of virulence in rapidly evolving pathogens

By Carl T. Bergstrom, Paul McElhany and Leslie A. Real

Abstract

Transmission bottlenecks occur in pathogen populations when only a few individual pathogens are transmitted from one infected host to another in the initiation of a new infection. Transmission bottlenecks can dramatically affect the evolution of virulence in rapidly evolving pathogens such as RNA viruses. Characterizing pathogen diversity with the quasispecies concept, we use analytical and simulation methods to demonstrate that severe bottlenecks are likely to drive down the virulence of a pathogen because of stochastic loss of the most virulent pathotypes, through a process analogous to Muller’s ratchet. We investigate in this process the roles of host population size, duration of within-host viral replication, and transmission bottleneck size. We argue that the patterns of accumulation of deleterious mutation may explain differing levels of virulence in vertically and horizontally transmitted diseases

Topics: Biological Sciences
Publisher: The National Academy of Sciences
Year: 1999
OAI identifier: oai:pubmedcentral.nih.gov:21822
Provided by: PubMed Central
Sorry, our data provider has not provided any external links therefore we are unable to provide a link to the full text.

Suggested articles


To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.