Physical Aspects of Cell Culture Substrates: Topography, Roughness, and Elasticity

Abstract

The cellular environment impacts a myriad of cellular functions by providing signals that can modulate cell phenotype and function. Physical cues such as topography, roughness, gradients, and elasticity are of particular importance. Thus, synthetic substrates can be potentially useful tools for exploring the influence of the aforementioned physical properties on cellular function. Many micro‐ and nanofabrication processes have been employed to control substrate characteristics in both 2D and 3D environments. This review highlights strategies for modulating the physical properties of surfaces, the influence of these changes on cell responses, and the promise and limitations of these surfaces in in‐vitro settings. While both hard and soft materials are discussed, emphasis is placed on soft substrates. Moreover, methods for creating synthetic substrates for cell studies, substrate properties, and impact of substrate properties on cell behavior are the main focus of this review. The cellular environment plays a significant role in cell phenotype and function. As such, physical properties of cell culture substrates including topography, roughness, and elasticity may be utilized to investigate the influence of these physical cues on the cellular response. In this review, strategies for modulating the physical properties of surfaces, the influence of these changes on cell responses, and the promise and limitations of these surfaces in in‐vitro settings are highlighted, with a particular emphasis on elastic substrates.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90132/1/336_ftp.pd

Similar works

Full text

thumbnail-image

Deep Blue Documents at the University of Michigan

redirect
Last time updated on 25/05/2012

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.