Location of Repository

Semitransparent organic photovoltaic cells

By Rhonda F. Bailey-Salzman, Barry P. Rand and Stephen R. Forrest

Abstract

We demonstrate semitransparent, small molecular weight organic solar cells employing a thin silver/indium tin oxide compound cathode with a maximum transmission of (60±6)%(60±6)% averaged over the visible spectral range and with a power conversion efficiency, ηp = (0.28±0.03)%ηp=(0.28±0.03)% under simulated, AM1.5G, 1 sun illumination. By increasing the Ag thickness, an average transmission of (26±3)%(26±3)% is achieved with ηp = (0.62±0.06)%ηp=(0.62±0.06)%, a value approximately half of that obtained for the same structure employing a conventional, reflective, and thick Ag cathode. A semitransparent tandem organic solar cell with ηp = (0.48±0.02)%ηp=(0.48±0.02)% and an average transmission of (44±4)%(44±4)% is also demonstrated. Semitransparent organic photovoltaic cells have potential uses as tinted and power-generating thin-film coatings on architectural surfaces, such as windows and walls. The use of a transparent top electrode also significantly simplifies the design of tandem cells, relaxing requirements for the placement of different absorbing materials at the maxima of optical fields introduced by reflective cathodes

Publisher: The American Institute of Physics
Year: 2006
DOI identifier: 10.1063/1.2209176
OAI identifier: oai:deepblue.lib.umich.edu:2027.42/87783

Suggested articles

Preview


To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.