Impact of reductive N2/H2N2∕H2 plasma on porous low-dielectric constant SiCOH thin films

Abstract

Porous low-dielectric constant (low-κκ) SiCOH thin films deposited using a plasma-enhanced chemical-vapor deposition have been comprehensively characterized before and after exposure to a reactive-ion-etch-type plasma of N2N2 and H2H2 chemistry. The low-κκ film studied in this work is a carbon-doped silicon oxide film with a dielectric constant (κ)(κ) of 2.5. Studies show that a top dense layer is formed as a result of significant surface film densification after exposure to N2/H2N2∕H2 plasma while the underlying bulk layer remains largely unchanged. The top dense layer is found to seal the porous bulk SiCOH film. SiCOH films experienced significant thickness reduction, κκ increase, and leakage current degradation after plasma exposure, accompanied by density increase, pore collapse, carbon depletion, and moisture content increase in the top dense layer. Both film densification and removal processes during N2/H2N2∕H2 plasma treatment were found to play important roles in the thickness reduction and κκ increase of this porous low-κκ SiCOH film. A model based upon mutually limiting film densification and removal processes is proposed for the continuous thickness reduction during plasma exposure. A combination of surface film densification, thickness ratio increase of top dense layer to bulk layer, and moisture content increase results in the increase in κκ value of this SiCOH film.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87611/2/113302_1.pd

Similar works

Full text

thumbnail-image

Deep Blue Documents at the University of Michigan

redirect
Last time updated on 25/05/2012

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.